login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255535
Numbers representable as both b^c + b + c and x^y + x - y, where b, c, x, y are integers greater than 1.
1
14, 88, 65548, 33554459, 387420510, 1099511627800, 35184372088855, 3656158440063002, 459986536544739960976836
OFFSET
1,1
COMMENTS
From Michael S. Branicky, May 15 2021: (Start)
The following are terms:
459986536544739960976836 = 7^28 + 7 + 28 = 49^14 + 49 - 14,
1237940039285380274899124273 = 4^45 + 4 + 45 = 64^15 + 64 - 15,
6362685...0216378 (46 digits) = 9^48 + 9 + 48 = 81^24 + 81 - 24, and
1000000...0000070 (61 digits) = 10^60 + 10 + 60 = 100^30 + 100 - 30. (End)
From Chai Wah Wu, May 17 2021: (Start)
Sequence is infinite.
If a, b > 1 and b^a-b == 0 mod a+1 then b^c+b+c is a term for c = ab(b^(a-1)-1)/(a+1), y = c/a, x = b^a.
If b > 1 and b <> 2 mod 3, then b^(2b(b-1)/3)+b(2b+1)/3 is a term.
If b > 2, then b^((b-1)(b^(b-2)-1)) + b + (b-1)(b^(b-2)-1) is a term. (End)
From Chai Wah Wu, May 18 2021: (Start)
Either c>=3 or y>=3. If c=y=2, we get b^2+b+2=x^2+x-2, i.e. (x-b)(x+b+1) = 4. Since x>1 and b>1, x+b+1>4, a contradiction.
This allows for a faster search algorithm by assuming c>=3 and y>=3. The cases c=2 and y>=3 can be dealt with by picking y>=3 and solving for b in the quadratic equation b^2+b+2=x^y+x-y. Similarly for c>=3 and y=2. This approach was used to confirm a(9). (End)
EXAMPLE
a(1) = 14 = 3^2 + 3 + 2 = 2^4 + 2 - 4.
a(2) = 88 = 3^4 + 3 + 4 = 9^2 + 9 - 2.
a(3) = 65548 = 4^8 + 4 + 8 = 16^4 + 16 - 4.
a(4) = 33554459 = 2^25 + 2 + 25 = 32^5 + 32 - 5.
a(5) = 387420510 = 3^18 + 3 + 18 = 27^6 + 27 - 6.
a(6) = 1099511627800 = 4^20 + 4 + 20 = 32^8 + 32 - 8.
a(7) = 35184372088855 = 8^15 + 8 + 15 = 32^9 + 32 - 9.
a(8) = 3656158440063002 = 6^20 + 6 + 20 = 36^10 + 36 - 10.
PROG
(Python)
TOP = 100000000
a = [0]*TOP
for y in range(2, TOP//2):
if 2**y+2+y>=TOP: break
for x in range(2, TOP//2):
k = x**y+x+y
if k>=TOP: break
a[k]=1
for y in range(2, TOP//2):
if 2**y+2-y>=TOP: break
for x in range(2, TOP//2):
k = x**y+x-y
if k>=TOP: break
if k>=0: a[k]|=2
print([n for n in range(TOP) if a[n]==3])
CROSSREFS
Cf. A254034.
Sequence in context: A116343 A259473 A202785 * A034544 A248060 A186257
KEYWORD
nonn,more
AUTHOR
Alex Ratushnyak, Feb 24 2015
EXTENSIONS
a(5)-a(8) from Lars Blomberg, May 19 2015
a(9) from Chai Wah Wu, May 18 2021
STATUS
approved