login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers representable as both b^c + b + c and x^y + x - y, where b, c, x, y are integers greater than 1.
1

%I #31 May 18 2021 18:06:19

%S 14,88,65548,33554459,387420510,1099511627800,35184372088855,

%T 3656158440063002,459986536544739960976836

%N Numbers representable as both b^c + b + c and x^y + x - y, where b, c, x, y are integers greater than 1.

%C From _Michael S. Branicky_, May 15 2021: (Start)

%C The following are terms:

%C 459986536544739960976836 = 7^28 + 7 + 28 = 49^14 + 49 - 14,

%C 1237940039285380274899124273 = 4^45 + 4 + 45 = 64^15 + 64 - 15,

%C 6362685...0216378 (46 digits) = 9^48 + 9 + 48 = 81^24 + 81 - 24, and

%C 1000000...0000070 (61 digits) = 10^60 + 10 + 60 = 100^30 + 100 - 30. (End)

%C From _Chai Wah Wu_, May 17 2021: (Start)

%C Sequence is infinite.

%C If a, b > 1 and b^a-b == 0 mod a+1 then b^c+b+c is a term for c = ab(b^(a-1)-1)/(a+1), y = c/a, x = b^a.

%C If b > 1 and b <> 2 mod 3, then b^(2b(b-1)/3)+b(2b+1)/3 is a term.

%C If b > 2, then b^((b-1)(b^(b-2)-1)) + b + (b-1)(b^(b-2)-1) is a term. (End)

%C From _Chai Wah Wu_, May 18 2021: (Start)

%C Either c>=3 or y>=3. If c=y=2, we get b^2+b+2=x^2+x-2, i.e. (x-b)(x+b+1) = 4. Since x>1 and b>1, x+b+1>4, a contradiction.

%C This allows for a faster search algorithm by assuming c>=3 and y>=3. The cases c=2 and y>=3 can be dealt with by picking y>=3 and solving for b in the quadratic equation b^2+b+2=x^y+x-y. Similarly for c>=3 and y=2. This approach was used to confirm a(9). (End)

%e a(1) = 14 = 3^2 + 3 + 2 = 2^4 + 2 - 4.

%e a(2) = 88 = 3^4 + 3 + 4 = 9^2 + 9 - 2.

%e a(3) = 65548 = 4^8 + 4 + 8 = 16^4 + 16 - 4.

%e a(4) = 33554459 = 2^25 + 2 + 25 = 32^5 + 32 - 5.

%e a(5) = 387420510 = 3^18 + 3 + 18 = 27^6 + 27 - 6.

%e a(6) = 1099511627800 = 4^20 + 4 + 20 = 32^8 + 32 - 8.

%e a(7) = 35184372088855 = 8^15 + 8 + 15 = 32^9 + 32 - 9.

%e a(8) = 3656158440063002 = 6^20 + 6 + 20 = 36^10 + 36 - 10.

%o (Python)

%o TOP = 100000000

%o a = [0]*TOP

%o for y in range(2,TOP//2):

%o if 2**y+2+y>=TOP: break

%o for x in range(2,TOP//2):

%o k = x**y+x+y

%o if k>=TOP: break

%o a[k]=1

%o for y in range(2,TOP//2):

%o if 2**y+2-y>=TOP: break

%o for x in range(2,TOP//2):

%o k = x**y+x-y

%o if k>=TOP: break

%o if k>=0: a[k]|=2

%o print([n for n in range(TOP) if a[n]==3])

%Y Cf. A254034.

%K nonn,more

%O 1,1

%A _Alex Ratushnyak_, Feb 24 2015

%E a(5)-a(8) from _Lars Blomberg_, May 19 2015

%E a(9) from _Chai Wah Wu_, May 18 2021