The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202785 Number of 3 X 3 0..n arrays with row and column sums equal. 2
 14, 87, 340, 1001, 2442, 5215, 10088, 18081, 30502, 48983, 75516, 112489, 162722, 229503, 316624, 428417, 569790, 746263, 964004, 1229865, 1551418, 1936991, 2395704, 2937505, 3573206, 4314519, 5174092, 6165545, 7303506, 8603647 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row 3 of A202784. LINKS R. H. Hardin, Table of n, a(n) for n = 1..210 Robert Israel, Proof of empirical formula for A202785 Wikipedia, Ehrhart polynomial FORMULA Empirical: a(n) = (3/10)*n^5 + (3/2)*n^4 + (7/2)*n^3 + (9/2)*n^2 + (16/5)*n + 1. Conjectures from Colin Barker, Jun 01 2018: (Start) G.f.: x*(7 - 2*x + x^2)*(2 + x + 4*x^2 - x^3) / (1 - x)^6. a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6. (End) Empirical formula verified (see link): Robert Israel, May 02 2019 EXAMPLE Some solutions for n=7: ..3..2..1....3..5..5....0..6..2....0..7..5....4..2..1....5..6..0....1..6..1 ..2..0..4....5..6..2....2..1..5....6..1..5....3..2..2....0..4..7....5..2..1 ..1..4..1....5..2..6....6..1..1....6..4..2....0..3..4....6..1..4....2..0..6 MAPLE seq((3/10)*n^5 + (3/2)*n^4 + (7/2)*n^3 + (9/2)*n^2 + (16/5)*n + 1, n=1..30); # Robert Israel, May 02 2019 CROSSREFS Cf. A202784. Sequence in context: A321941 A116343 A259473 * A255535 A034544 A248060 Adjacent sequences: A202782 A202783 A202784 * A202786 A202787 A202788 KEYWORD nonn AUTHOR R. H. Hardin, Dec 24 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 19:40 EDT 2023. Contains 365503 sequences. (Running on oeis4.)