login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321847
E.g.f.: exp(x/(1 - 4*x)).
6
1, 1, 9, 121, 2161, 48081, 1279801, 39631369, 1398961761, 55422807841, 2434261023721, 117366299630361, 6161301265353169, 349768597919934961, 21347094823271661081, 1393695557886847095721, 96910923898115717350081, 7149718240571434690591809
OFFSET
0,3
COMMENTS
For k = 2, 3, 4, ... the difference a(n+k) - a(n) is divisible by k.
LINKS
Norihiro Nakashima, Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
FORMULA
a(n) = Sum_{k=0..n} 4^(n - k)*(n!/k!)*binomial(n-1, k-1).
Recurrence: a(n) = (8*n - 7)*a(n-1) - 16*(n-2)*(n-1)*a(n-2).
a(n) ~ n! * exp(sqrt(n) - 1/8) * 2^(2*n - 3/2) / (sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Nov 21 2018
MAPLE
seq(coeff(series(factorial(n)*exp(x/(1-4*x)), x, n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
MATHEMATICA
a[n_] := Sum[4^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (8n - 7)*a[n - 1] - 16(n - 2)(n - 1) *a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
CoefficientList[Series[Exp[x/(1 - 4*x)], {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Dec 07 2018 *)
PROG
(PARI) my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-4*x)))) \\ Michel Marcus, Nov 25 2018
(Maxima) (a[0] : 1, a[1] : 1, a[n] := (8*n - 7)*a[n-1] - 16*(n-2)*(n-1)*a[n-2], makelist(a[n], n, 0, 20)); /* Franck Maminirina Ramaharo, Nov 27 2018 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Ludovic Schwob, Nov 19 2018
STATUS
approved