login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281436
E.g.f. C(x) satisfies: C(x) = cosh( Integral C(x)^6 dx ).
1
1, 1, 25, 1921, 301105, 79715041, 31953352585, 18055521444961, 13675020394100065, 13371875150000047681, 16399205085221871057145, 24649278939856374854251201, 44562940283889239727355265425, 95400484808911059939339873215521, 238677467614161144737008148697894505, 690019785744332320572996561216607892641, 2282793490173453501140213827073151244641985
OFFSET
0,3
FORMULA
C(x)^2 - S(x)^2 = 1 and C(x) = 1 + Integral C(x)^6*S(x) dx, where S(x) is described by A281435.
PROG
(PARI) {a(n) = my(S=x, C=1); for(i=0, n, S = intformal( C^7 +x*O(x^(2*n))); C = 1 + intformal( S*C^6 ) ); (2*n)!*polcoeff(C, 2*n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A322247 A177837 A056047 * A197671 A051112 A061843
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2017
STATUS
approved