login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322245
a(n) = A322244(n)^2, the square of the central coefficient in (1 + 3*x + 16x^2)^n.
4
1, 9, 1681, 99225, 11189025, 1019077929, 108167974321, 11137724806329, 1197175570050625, 129043286745662025, 14139849178569444561, 1560056939689534791129, 173632800433761049827681, 19441545948416137605093225, 2189471746316530595782640625, 247739375533243457859858956025, 28151322919072607132343448452225, 3210745922813847247161044673062025
OFFSET
0,2
COMMENTS
The g.f. of A322244 is 1/sqrt(1 - 6*x - 55*x^2).
LINKS
FORMULA
G.f.: 1 / AGM(1 + 5*11*x, sqrt((1 - 5^2*x)*(1 - 11^2*x)) ), where AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) is the arithmetic-geometric mean.
G.f.: 1 / AGM((1-5*x)*(1-11*x), (1+5*x)*(1+11*x)) = Sum_{n>=0} a(n)*x^(2*n).
a(n) = A322244(n)^2, where A322244(n) = a(n) = Sum_{k=0..n} 11^(n-k) * (-4)^k * binomial(n,k)*binomial(2*k,k).
a(n) ~ 11^(2*n + 1) / (16*Pi*n). - Vaclav Kotesovec, Dec 13 2018
EXAMPLE
G.f.: A(x) = 1 + 9*x + 1681*x^2 + 99225*x^3 + 11189025*x^4 + 1019077929*x^5 + 108167974321*x^6 + 11137724806329*x^7 + 1197175570050625*x^8 + ...
that is,
A(x) = 1 + 3^2*x + 41^2*x^2 + 315^2*x^3 + 3345^2*x^4 + 31923^2*x^5 + 328889^2*x^6 + 3337323^2*x^7 + 34600225^2*x^8 + ... + A322244(n)^2*x^n + ...
MATHEMATICA
a[n_] := Sum[11^(n-k) * (-4)^k * Binomial[n, k] * Binomial[2k, k], {k, 0, n}]^2; Array[a, 20, 0] (* Amiram Eldar, Dec 13 2018 *)
PROG
(PARI) /* a(n) = A322244(n)^2 - g.f. */
{a(n)=polcoeff(1/sqrt(1 - 6*x - 55*x^2 +x*O(x^n)), n)^2}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* a(n) = A322244(n)^2 - binomial sum */
{a(n) = sum(k=0, n, 11^(n-k)*(-4)^k*binomial(n, k)*binomial(2*k, k))^2}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* Using AGM: */
{a(n)=polcoeff( 1 / agm(1 + 5*11*x, sqrt((1 - 5^2*x)*(1 - 11^2*x) +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A322244.
Sequence in context: A197206 A197804 A047944 * A251700 A246115 A068182
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 09 2018
STATUS
approved