OFFSET
0,4
REFERENCES
V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
K. S. Brown, Dedekind's problem
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
Eric Weisstein's World of Mathematics, Antichain covers
Index entries for linear recurrences with constant coefficients, signature (22,-190,820,-1849,2038,-840).
FORMULA
a(n) = (1/6)*(7^n-6*5^n+6*4^n+3*3^n-6*2^n+2).
G.f.: -2*x^3*(31*x^2-6*x-1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)). - Colin Barker, Nov 27 2012
EXAMPLE
There are 2 3-antichain covers of a labeled 3-set: {{1},{2},{3}}, {{1,2},{1,3},{2,3}}.
MATHEMATICA
Table[(1/6)*(7^n-6*5^n+6*4^n+3*3^n-6*2^n+2), {n, 0, 50}] (* G. C. Greubel, Oct 06 2017 *)
LinearRecurrence[{22, -190, 820, -1849, 2038, -840}, {0, 0, 0, 2, 56, 790}, 30] (* Harvey P. Dale, Dec 09 2017 *)
PROG
(PARI) for(n=0, 50, print1((1/6)*(7^n-6*5^n+6*4^n+3*3^n-6*2^n+2), ", ")) \\ G. C. Greubel, Oct 06 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jul 25 2000
STATUS
approved