OFFSET
1,1
COMMENTS
Numbers k such that for some prime p, Sum_{i>=1} (floor(k/p^i) - 2 * floor((f+1)/p^i)) < 0, where f = floor(k/2). - Robert Israel, Oct 14 2024
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
12 is here because 12!/(7!*7!) = 132/7 is not an integer.
10 is not here because 10!/(6!*6!) = 7 is an integer.
MAPLE
filter:= k -> k! mod ((1+floor(k/2))!)^2 <> 0:
select(filter, [$1..100]); # Robert Israel, Oct 13 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 27 2000
STATUS
approved