

A057771


Number of loops (quasigroups with an identity element) of order n.


11



1, 1, 1, 2, 6, 109, 23746, 106228849, 9365022303540, 20890436195945769617, 1478157455158044452849321016
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


REFERENCES

A. Hulpke, P. Kaski and P. R. J. Ostergard, The number of Latin squares of order 11, Preprint, 2009.


LINKS

Table of n, a(n) for n=1..11.
Index entries for sequences related to quasigroups
B. D. McKay, A. Meynert and W. Myrvold, Small Latin Squares, Quasigroups and Loops, J. Combin. Designs 15 (2007), no. 2, 98119.


CROSSREFS

Cf. A000315, A057991A057994, A057996, A057995, A089925.
Sequence in context: A222854 A059088 A216151 * A056164 A156500 A231537
Adjacent sequences: A057768 A057769 A057770 * A057772 A057773 A057774


KEYWORD

nonn,more,nice


AUTHOR

Christian G. Bower, Nov 01 2000


EXTENSIONS

a(8) from Juergen Buntrock (jubu(AT)jubu.com), Nov 03 2003.
Two more terms (from the McKayMeynertMyrvold article) from Richard Bean (rwb(AT)eskimo.com), Feb 17 2004
There are 1478157455158044452849321016 isomorphism classes of loops of order 11.  Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 18 2009


STATUS

approved



