login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057772
Inverse Euler transform of A000016.
1
1, 0, 1, 0, 2, 1, 4, 4, 12, 15, 34, 55, 110, 190, 370, 664, 1272, 2350, 4466, 8372, 15926, 30105, 57390, 109202, 208738, 398985, 764906, 1467370, 2820770, 5427543, 10459456, 20176561, 38969684, 75339232, 145804978, 282429242, 547573768, 1062501151, 2063317650
OFFSET
1,5
REFERENCES
P. J. Cameron, Some counting problems related to permutation groups, Discrete Math., 225 (2000), 77-92.
LINKS
MAPLE
with(numtheory): ietr:= proc(p) local a, c; c:= proc(n) option remember; local j; n*p(n)-add(c(j)*p(n-j), j=1..n-1) end; a:=proc(n) option remember; local d; `if`(n=0, 1, add(mobius(n/d)*c(d), d=divisors(n))/n) end end: a:= ietr(n-> add(phi(d) *2^(n/d)/2/n, d=select(m-> modp(m, 2)=1, divisors(n)))): seq(a(n), n=1..40); # Alois P. Heinz, Sep 08 2008
# The function EulerInvTransform is defined in A358451.
a := EulerInvTransform(A000016):
seq(a(n), n = 1..39); # Peter Luschny, Nov 21 2022
MATHEMATICA
ietr[p_] := Module[{a, c}, c[n_] := c[n] = Module[{j}, n*p[n] - Sum[c[j]*p[n-j], {j, 1, n-1}]]; a[n_] := a[n] = Module[{d}, If[n == 0, 1, Sum[MoebiusMu[n/d]*c[d], {d, Divisors[n]}]/n]]; a]; a = ietr[Function[n, Sum[EulerPhi[d]*2^(n/d)/2/n, {d, Select[Divisors[n], OddQ]}]]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jan 17 2014, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A211178 A048049 A212716 * A145861 A191660 A129874
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 02 2000
EXTENSIONS
Better definition and more terms from Vladeta Jovovic, Mar 13 2008
STATUS
approved