Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Nov 21 2022 09:10:07
%S 1,0,1,0,2,1,4,4,12,15,34,55,110,190,370,664,1272,2350,4466,8372,
%T 15926,30105,57390,109202,208738,398985,764906,1467370,2820770,
%U 5427543,10459456,20176561,38969684,75339232,145804978,282429242,547573768,1062501151,2063317650
%N Inverse Euler transform of A000016.
%D P. J. Cameron, Some counting problems related to permutation groups, Discrete Math., 225 (2000), 77-92.
%H Alois P. Heinz, <a href="/A057772/b057772.txt">Table of n, a(n) for n = 1..1000</a>
%p with(numtheory): ietr:= proc(p) local a, c; c:= proc(n) option remember; local j; n*p(n)-add(c(j)*p(n-j), j=1..n-1) end; a:=proc(n) option remember; local d; `if`(n=0,1, add(mobius(n/d)*c(d), d=divisors(n))/n) end end: a:= ietr(n-> add(phi(d) *2^(n/d)/2/n, d=select(m-> modp(m,2)=1, divisors(n)))): seq(a(n), n=1..40); # _Alois P. Heinz_, Sep 08 2008
%p # The function EulerInvTransform is defined in A358451.
%p a := EulerInvTransform(A000016):
%p seq(a(n), n = 1..39); # _Peter Luschny_, Nov 21 2022
%t ietr[p_] := Module[{a, c}, c[n_] := c[n] = Module[{j}, n*p[n] - Sum[c[j]*p[n-j], {j, 1, n-1}]]; a[n_] := a[n] = Module[{d}, If[n == 0, 1, Sum[MoebiusMu[n/d]*c[d], {d, Divisors[n]}]/n]]; a]; a = ietr[Function[n, Sum[EulerPhi[d]*2^(n/d)/2/n, {d, Select[Divisors[n], OddQ]}]]]; Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Jan 17 2014, after _Alois P. Heinz_ *)
%K nonn
%O 1,5
%A _N. J. A. Sloane_, Nov 02 2000
%E Better definition and more terms from _Vladeta Jovovic_, Mar 13 2008