login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191660
Second differences of A000219.
3
2, 1, 4, 4, 13, 14, 36, 48, 96, 141, 261, 386, 676, 1030, 1706, 2619, 4230, 6462, 10219, 15568, 24165, 36627, 56103, 84428, 127873, 191201, 286663, 425802, 632973, 933995, 1377774, 2020424, 2959438, 4314109, 6278824, 9100908, 13167388, 18983295, 27313916, 39177636, 56080228, 80048942, 114030110, 162018938, 229741517, 325000341, 458854803, 646409612
OFFSET
0,1
REFERENCES
G. Almkvist, The differences of the number of plane partitions, Manuscript, circa 1991.
FORMULA
a(n) ~ 2^(13/36) * Zeta(3)^(31/36) * exp(1/12 + 3*Zeta(3)^(1/3)*n^(2/3)/2^(2/3)) / (A * sqrt(3*Pi) * n^(49/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Oct 30 2016
MATHEMATICA
Differences[CoefficientList[Series[Product[(1-x^k)^-k, {k, 1, 64}], {x, 0, 64}], x], 2] (* Harvey P. Dale, Jun 19 2011 *)
nmax = 50; Drop[CoefficientList[Series[(1-x)^2 * Product[1/(1-x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x], 2] (* Vaclav Kotesovec, Oct 30 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 10 2011
STATUS
approved