Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 30 2016 18:48:23
%S 2,1,4,4,13,14,36,48,96,141,261,386,676,1030,1706,2619,4230,6462,
%T 10219,15568,24165,36627,56103,84428,127873,191201,286663,425802,
%U 632973,933995,1377774,2020424,2959438,4314109,6278824,9100908,13167388,18983295,27313916,39177636,56080228,80048942,114030110,162018938,229741517,325000341,458854803,646409612
%N Second differences of A000219.
%D G. Almkvist, The differences of the number of plane partitions, Manuscript, circa 1991.
%F a(n) ~ 2^(13/36) * Zeta(3)^(31/36) * exp(1/12 + 3*Zeta(3)^(1/3)*n^(2/3)/2^(2/3)) / (A * sqrt(3*Pi) * n^(49/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Oct 30 2016
%t Differences[CoefficientList[Series[Product[(1-x^k)^-k, {k,1,64}], {x,0,64}],x],2] (* _Harvey P. Dale_, Jun 19 2011 *)
%t nmax = 50; Drop[CoefficientList[Series[(1-x)^2 * Product[1/(1-x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x], 2] (* _Vaclav Kotesovec_, Oct 30 2016 *)
%Y Cf. A000219, A191659, A191661.
%K nonn
%O 0,1
%A _N. J. A. Sloane_, Jun 10 2011