login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059085
Number of labeled n-node T_0-hypergraphs without multiple hyperedges (empty hyperedge included).
8
2, 4, 12, 216, 64152, 4294320192, 18446744009290559040, 340282366920938463075992982635439125760, 115792089237316195423570985008687907843742078391854287068422946583140399879680
OFFSET
0,1
COMMENTS
A hypergraph is a T_0 hypergraph if for every two distinct nodes there exists a hyperedge containing one but not the other node.
FORMULA
Row sums of A059084.
a(n) = Sum_{k=0..n} stirling1(n, k)*2^(2^k).
E.g.f.: Sum(2^(2^n)*log(1+x)^n/n!, n=0..infinity) = Sum(log(2)^n*(1+x)^(2^n)/n!, n=0..infinity). - Vladeta Jovovic, May 10 2004
EXAMPLE
There are 216 labeled 3-node T_0-hypergraphs without multiple hyperedges (empty hyperedge included): 12 with 2 hyperedges, 44 with 3 hyperedges,67 with 4 hyperedges, 56 with 5 hyperedges, 28 with 6 hyperedges, 8 with 7 hyperedges and 1 with 8 hyperedges.
MAPLE
with(combinat): for n from 0 to 15 do printf(`%d, `, sum(stirling1(n, k)*2^(2^k), k=0..n)) od:
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Goran Kilibarda, Vladeta Jovovic, Dec 27 2000
EXTENSIONS
More terms from James A. Sellers, Jan 24 2001
STATUS
approved