

A287059


Least numbers k > 1 such that k'' = n*k', where k' and k'' are the first and the second arithmetic derivatives of k.


0



2, 4, 12, 160, 1255, 256, 12279, 3072, 1113823, 119120, 2191040, 4640768, 1835008, 12805120, 134217728
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS



EXAMPLE

a(3) = 160 because 160'' / 160' = 1296 / 432 = 3 and this is the least number to have this property.


MAPLE

with(numtheory): P:=proc(q) local a, b, k, n, p; for n from 0 to q do
for k from 2 to q do a:=k*add(op(2, p)/op(1, p), p=ifactors(k)[2]); b:=a*add(op(2, p)/op(1, p), p=ifactors(a)[2]); if b=n*a then print(k); break;
fi; od; od; end: P(10^9);


CROSSREFS



KEYWORD

nonn,more


AUTHOR



STATUS

approved



