|
|
A180500
|
|
Triangle read by row. T(n,m) gives the number of isomorphism classes of simple arrangements of n pseudolines and m double pseudolines in the projective plane.
|
|
2
|
|
|
1, 1, 1, 1, 1, 1, 1, 2, 4, 13, 1, 5, 48, 626, 6570, 1, 25, 1329, 86715, 4822394, 181403533
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
REFERENCES
|
J. Ferté, V. Pilaud and M. Pocchiola, On the number of arrangements of five double pseudolines, Abstracts 18th Fall Workshop on Comput. Geom. (FWCG08), Troy, NY, October 2008.
|
|
LINKS
|
Table of n, a(n) for n=0..20.
J. Ferté, V. Pilaud and M. Pocchiola, On the number of simple arrangements of five double pseudolines, arXiv:1009.1575 [cs.CG], 2010; Discrete Comput. Geom. 45 (2011), 279-302.
|
|
CROSSREFS
|
See A180501 for isomorphism classes of all (not only simple) arrangements of n pseudolines and m double pseudolines in the projective plane.
See A180503 for isomorphism classes of simple arrangements of n pseudolines and m double pseudolines in the Moebius strip.
First diagonal gives A006248.
Sequence in context: A059085 A030064 A224886 * A176990 A109928 A023640
Adjacent sequences: A180497 A180498 A180499 * A180501 A180502 A180503
|
|
KEYWORD
|
nonn,tabl,more
|
|
AUTHOR
|
Vincent Pilaud, Sep 08 2010
|
|
STATUS
|
approved
|
|
|
|