login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176990
Table T(n,m) read by rows: the coefficient of [t^n x^m] of 2*n!*(n+2)!*exp(x*t)*( t*(1-exp(t))-exp(t) ) / (1-exp(t) ), 0<=m<=n+1.
0
2, 4, 13, 6, 6, 0, 104, 24, 16, -2, 0, 780, 120, 60, 0, -48, 0, 6240, 720, 288, 40, 0, -840, 0, 54600, 5040, 1680, 0, 1920, 0, -13440, 0, 524160, 40320, 11520, -3024, 0, 60480, 0, -211680, 0, 5503680, 362880, 90720, 0, -241920, 0, 1612800, 0, -3386880, 0, 62899200, 3628800, 806400, 604800, 0, -11975040, 0, 39916800, 0, -55883520, 0, 778377600, 39916800, 7983360, 0, 72576000, 0, -479001600, 0, 958003200, 0, -958003200, 0, 10378368000, 479001600, 87091200
OFFSET
0,1
COMMENTS
Row sums are: 6, 25, 144, 958, 7200, 60520, 564480, 5803056, 65318400, 798940800,
10538035200,....
The bivariate expansion is exp(x*t)*( t*(1-exp(t))-exp(t) )/ (1-exp(t) )= 1/t +(1/2+x)*t^0 + (13/12+x/2+x^2/2)*t +... The leading term 1/t corresponding to n = -1 is dropped, and the other rows are scaled with a factor 2*n!*(n+2)!.
EXAMPLE
2, 4;
13, 6, 6;
0, 104, 24, 16;
-2, 0, 780, 120, 60;
0, -48, 0, 6240, 720, 288;
40, 0, -840, 0, 54600, 5040, 1680;
0,1920, 0, -13440, 0, 524160, 40320, 11520;
-3024, 0, 60480, 0, -211680, 0, 5503680, 362880, 90720;
0, -241920, 0, 1612800, 0, -3386880, 0, 62899200, 3628800, 806400;
604800, 0, -11975040, 0, 39916800, 0, -55883520, 0, 778377600, 39916800, 7983360;
0,72576000, 0, -479001600, 0, 958003200, 0, -958003200, 0, 10378368000, 479001600, 87091200;
MATHEMATICA
p[t_] = Exp[x*t](t*(1 - Exp[t]) - Exp[t])/(1 - Exp[t]);
a = Table[ CoefficientList[(n!*(n + 2)!*2)*SeriesCoefficient[
Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}];
Flatten[a]
CROSSREFS
Cf. A176989.
Sequence in context: A030064 A224886 A180500 * A109928 A023640 A367109
KEYWORD
sign,tabf
AUTHOR
Roger L. Bagula, Dec 08 2010
STATUS
approved