login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176989
Triangle read by rows: the coefficient [t^n x^k] of n!*(n+2)! *exp(x*t) *(t*(1-2*exp(t))-2*exp(t)) / (2*(1-exp(t))), in row n, k=0..n+1.
2
2, 2, 5, 6, 3, 2, 40, 24, 8, -1, 30, 300, 120, 30, -12, -24, 360, 2400, 720, 144, 20, -420, -420, 4200, 21000, 5040, 840, 480, 960, -10080, -6720, 50400, 201600, 40320, 5760, -1512, 30240, 30240, -211680, -105840, 635040, 2116800, 362880, 45360, -60480, -120960, 1209600, 806400
OFFSET
0,1
COMMENTS
Row sums are 4, 14, 74, 479, 3588, 30260, 282720, 2901528, 32598720, 399470400, 5287161600, ...
The expansion of exp(x*t)*(...)/(1-exp(t)) in powers of t starts with a term 2/t, which is ignored and does not enter the table. The coefficient of t^n multiplied by n!(n+2)!/2 defines row n.
FORMULA
exp(x*t)*(t*(1-2*exp(t))-2*exp(t))/(1-exp(t)) = 2/t + (2+2x)*t^0 + (5/3+2x+x^2)*t^1 + ...
EXAMPLE
The coefficients start in row n=0 with column k=0..n+1 as:
2, 2;
5, 6, 3;
2, 40, 24, 8;
-1, 30, 300, 120, 30;
-12, -24, 360, 2400, 720, 144;
20, -420, -420, 4200, 21000, 5040, 840;
480, 960, -10080, -6720, 50400, 201600, 40320, 5760;
MAPLE
A176989 := proc(n, k) local x ;
exp(x*t)*(t*(1-2*exp(t))-2*exp(t))/(1-exp(t))-2/t ;
n!*(n+2)!/2 *% ; series(%, t, n+3) ;
convert(%, polynom) ; coeftayl(%, t=0, n) ; coeftayl(%, x=0, k) ;
end proc:
seq (seq(A176989(n, k), k=0..n+1), n=0..5) ; # R. J. Mathar, Dec 20 2010
MATHEMATICA
p[t_] = Exp[x*t]*(t*(1 - 2*Exp[t]) - 2*Exp[t])/(1 - Exp[t]);
a = Table[ CoefficientList[(n!*(n + 2)!/2)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}];
Flatten[a]
CROSSREFS
Sequence in context: A103892 A000403 A068763 * A367211 A250303 A368554
KEYWORD
sign,tabf
AUTHOR
Roger L. Bagula, Dec 08 2010
STATUS
approved