login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367211
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 2x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2x - x^2.
19
1, 2, 2, 5, 6, 3, 12, 20, 12, 4, 29, 60, 50, 20, 5, 70, 174, 180, 100, 30, 6, 169, 490, 609, 420, 175, 42, 7, 408, 1352, 1960, 1624, 840, 280, 56, 8, 985, 3672, 6084, 5880, 3654, 1512, 420, 72, 9, 2378, 9850, 18360, 20280, 14700, 7308, 2520, 600, 90, 10
OFFSET
1,2
COMMENTS
Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.
LINKS
Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
FORMULA
p(n, x) = u*p(n-1, x) + v*p(n-2, x) for n >= 3, where p(1, x) = 1, p(2, x) = 2 + 2 x, u = p(2, x), and v = 1 - 2x - x^2.
p(n, x) = k*(b^n - c^n), where k = sqrt(1/8), b = x + 1 - sqrt(2), c = x + 1 + sqrt(2).
From Werner Schulte, Nov 24 2023 and Nov 25 2023: (Start)
The row polynomials p(n, x) = Sum_{k=0..n-1} T(n, k) * x^k satisfy the equation p'(n, x) = n * p(n-1, x) where p' is the first derivative of p.
T(n, k) = T(n-1, k-1) * n / k for 0 < k < n and T(n, 0) = A000129(n) for n > 0.
T(n, k) = A000129(n-k) * binomial(n, k) for 0 <= k < n.
G.f.: t / (1 - (2+2*x) * t - (1-2*x-x^2) * t^2). (End)
EXAMPLE
First nine rows:
[n\k] 0 1 2 3 4 5 6 7 8
[1] 1;
[2] 2 2;
[3] 5 6 3;
[4] 12 20 12 4;
[5] 29 60 50 20 5;
[6] 70 174 180 100 30 6;
[7] 169 490 609 420 175 42 7;
[8] 408 1352 1960 1624 840 280 56 8;
[9] 985 3672 6084 5880 3654 1512 420 72 9;
.
Row 4 represents the polynomial p(4,x) = 12 + 20 x + 12 x^2 + 4 x^3, so that (T(4,k)) = (12, 20, 12, 4), k = 0..3.
MAPLE
P := proc(n) option remember; ifelse(n <= 1, n, 2*P(n - 1) + P(n - 2)) end:
T := (n, k) -> P(n - k) * binomial(n, k):
for n from 1 to 9 do [n], seq(T(n, k), k = 0..n-1) od;
# (after Werner Schulte) Peter Luschny, Nov 24 2023
MATHEMATICA
p[1, x_] := 1; p[2, x_] := 2 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
CROSSREFS
Cf. A000129 (column 1), A361732 (column 2), A000027 (T(n,n-1)), A007070 (row sums, p(n,1)), A077957 (alternating row sums, p(n,-1)), A081179 (p(n,2), A077985 (p(n,-2), A081180 (p(n,3)), A007070 (p(n,-3)), A081182 (p(n,4)), A094440, A367208, A367209, A367210.
Sequence in context: A000403 A068763 A176989 * A250303 A368554 A301477
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Nov 13 2023
STATUS
approved