login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059083 Number of T_0-antichains on a labeled n-set. 7
2, 3, 3, 8, 96, 6373, 7725703, 2414518872815, 56130437161078967568912 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point.
REFERENCES
V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
LINKS
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
FORMULA
a(n) = Sum_{m=0..binomial(n, floor(n/2))} A(m, n), where A(m, n) is number of m-element T_0-antichains on a labeled n-set. Cf. A059080.
a(n) = column sums of A059080.
EXAMPLE
a(0) = 1 + 1, a(1) = 1 + 2, a(2) = 2 + 1, a(3) = 6 + 2, a(4) = 12 + 52 + 25 + 6 + 1, a(5) = 520 + 1770 + 2086 + 1370 + 490 + 115 + 20 + 2.
CROSSREFS
Cf. A000372.
Sequence in context: A263464 A267563 A166994 * A207626 A232324 A124931
KEYWORD
hard,nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jan 06 2001
EXTENSIONS
More terms from Vladeta Jovovic, Nov 28 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 11:25 EST 2024. Contains 370511 sequences. (Running on oeis4.)