The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059083 Number of T_0-antichains on a labeled n-set. 7
 2, 3, 3, 8, 96, 6373, 7725703, 2414518872815, 56130437161078967568912 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point. REFERENCES V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation. LINKS Table of n, a(n) for n=0..8. V. Jovovic, 3-element T_0-antichains on a labeled 4-set V. Jovovic, Formula for the number of m-element T_0-antichains on a labeled n-set V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6). FORMULA a(n) = Sum_{m=0..binomial(n, floor(n/2))} A(m, n), where A(m, n) is number of m-element T_0-antichains on a labeled n-set. Cf. A059080. a(n) = column sums of A059080. EXAMPLE a(0) = 1 + 1, a(1) = 1 + 2, a(2) = 2 + 1, a(3) = 6 + 2, a(4) = 12 + 52 + 25 + 6 + 1, a(5) = 520 + 1770 + 2086 + 1370 + 490 + 115 + 20 + 2. CROSSREFS Cf. A059079-A059082, A059048-A059052. Cf. A000372. Sequence in context: A263464 A267563 A166994 * A207626 A232324 A124931 Adjacent sequences: A059080 A059081 A059082 * A059084 A059085 A059086 KEYWORD hard,nonn AUTHOR Vladeta Jovovic, Goran Kilibarda, Jan 06 2001 EXTENSIONS More terms from Vladeta Jovovic, Nov 28 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 3 11:25 EST 2024. Contains 370511 sequences. (Running on oeis4.)