The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059080 Triangle A(n,m) of numbers of n-element T_0-antichains on a labeled m-set, m=0,...,2^n. 5
 1, 1, 1, 2, 2, 0, 0, 1, 6, 12, 0, 0, 0, 2, 52, 520, 2640, 6720, 6720, 0, 0, 0, 0, 25, 1770, 53940, 1012620, 13487040, 136745280, 1094688000, 7025356800, 36084787200, 145297152000, 435891456000, 871782912000, 871782912000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS An antichain on a set is a T_0-antichain if for every two distinct points of the set there exists a member of the antichain containing one but not the other point. Row sums give A059079. Column sums give A059083. REFERENCES V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6) V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation. LINKS Table of n, a(n) for n=0..35. V. Jovovic, 3-element T_0-antichains on a labeled 4-set V. Jovovic, Formula for the number of m-element T_0-antichains on a labeled n-set EXAMPLE [1, 1], [1, 2, 2], [0, 0, 1, 6, 12], [0, 0, 0, 2, 52, 520, 2640, 6720, 6720], ...; there are 2 3-element T_0-antichains on a 3-set: {{1}, {2}, {3}}, {{1, 2}, {1, 3}, {2, 3}}. CROSSREFS Cf. A059079, A059081-A059083, A059048-A059052. Sequence in context: A125226 A281790 A245254 * A062070 A347088 A343991 Adjacent sequences: A059077 A059078 A059079 * A059081 A059082 A059083 KEYWORD nonn AUTHOR Vladeta Jovovic, Goran Kilibarda, Dec 29 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 04:27 EDT 2024. Contains 373629 sequences. (Running on oeis4.)