login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059203
Number of n-block T_0-covers of a labeled set.
3
1, 1, 6, 2270, 148109472315, 186266607433353989829111737621541, 7485122439882901107741903784218892557452456923078744798141861944074340339271507786827
OFFSET
0,3
COMMENTS
A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.
LINKS
FORMULA
a(n) = (- 1)^n + (1/n!)*Sum_{i = 2,..,n + 1} stirling1(n + 1, i)*floor((2^(i - 1) - 1)!*exp(1)), n>0, a(0) = 1.
a(n) = (1/n!)*Sum_{i = 1,..,n + 1} stirling1(n + 1, i)*A000522(2^(i - 1) - 1).
EXAMPLE
a(4) = 1 + (1/4!)*( - 50*[1!*e] + 35*[3!*e] - 10*[7!*e] + [15!*e]) = 1 + (1/4!)*( - 50*2 + 35*16 - 10*13700 + 3554627472076) = 148109472315, where [k!*e] := floor(k!*exp(1)).
MAPLE
with(combinat): Digits := 1500: f := n->(-1)^n+(1/n!)*sum(stirling1(n+1, i)*floor((2^(i-1)-1)!*exp(1)), i=2..n+1): for n from 1 to 10 do printf(`%d, `, f(n)) od:
MATHEMATICA
a[0] := 1; a[n_] := (-1)^n + (1/n!)*Sum[StirlingS1[n + 1, k]*Floor[(2^(k - 1) - 1)!*E], {k, 2, n + 1}]; Table[a[n], {n, 0, 5}] (* G. C. Greubel, Dec 28 2016 *)
CROSSREFS
Cf. A059201, column sums of A059202, A059084 - A059089, A000522.
Sequence in context: A051113 A067174 A153300 * A254005 A279654 A198403
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jan 18 2001
EXTENSIONS
More terms from James A. Sellers, Jan 24 2001
STATUS
approved