login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217334
G.f.: exp( Sum_{n>=1} (2*sigma(n^2) - sigma(n)^2 - sigma(n,2))/2 * x^n/n ).
1
1, 0, 0, 0, -1, 0, -1, 0, -3, -1, 0, 0, -4, 1, 3, 0, 4, 3, 1, 1, 16, 4, 10, 0, 15, -4, 6, 0, 14, -15, -11, -9, -29, -5, -56, -14, -56, -24, -101, 10, -140, -8, -25, 18, -101, 27, 7, 50, 91, 128, 222, 29, 300, 207, 516, 119, 614, 73, 762, 115, 510, 89, 614, -280
OFFSET
0,9
COMMENTS
The number of contiguous signs appear to increase (roughly) in proportion to the square-root of the number of terms.
LINKS
EXAMPLE
G.f.: A(x) = 1 - x^4 - x^6 - 3*x^8 - x^9 - 4*x^12 + x^13 + 3*x^14 + 4*x^16 +...
where
log(A(x)) = -4*x^4/4 - 6*x^6/6 - 28*x^8/8 - 9*x^9/9 - 10*x^10/10 - 94*x^12/12 - 14*x^14/14 - 15*x^15/15 - 140*x^16/16 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(m^2)-sigma(m)^2/2-sigma(m, 2)/2)*x^m/m)+x*O(x^n)), n)}
for(n=0, 70, print1(a(n), ", "))
CROSSREFS
Sequence in context: A059202 A244963 A144452 * A369455 A353859 A058865
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 30 2012
STATUS
approved