login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} (2*sigma(n^2) - sigma(n)^2 - sigma(n,2))/2 * x^n/n ).
1

%I #6 Sep 30 2012 22:05:43

%S 1,0,0,0,-1,0,-1,0,-3,-1,0,0,-4,1,3,0,4,3,1,1,16,4,10,0,15,-4,6,0,14,

%T -15,-11,-9,-29,-5,-56,-14,-56,-24,-101,10,-140,-8,-25,18,-101,27,7,

%U 50,91,128,222,29,300,207,516,119,614,73,762,115,510,89,614,-280

%N G.f.: exp( Sum_{n>=1} (2*sigma(n^2) - sigma(n)^2 - sigma(n,2))/2 * x^n/n ).

%C The number of contiguous signs appear to increase (roughly) in proportion to the square-root of the number of terms.

%H Paul D. Hanna, <a href="/A217334/b217334.txt">Table of n, a(n) for n = 0..1000</a>

%e G.f.: A(x) = 1 - x^4 - x^6 - 3*x^8 - x^9 - 4*x^12 + x^13 + 3*x^14 + 4*x^16 +...

%e where

%e log(A(x)) = -4*x^4/4 - 6*x^6/6 - 28*x^8/8 - 9*x^9/9 - 10*x^10/10 - 94*x^12/12 - 14*x^14/14 - 15*x^15/15 - 140*x^16/16 +...

%o (PARI) {a(n)=polcoeff(exp(sum(m=1,n,(sigma(m^2)-sigma(m)^2/2-sigma(m,2)/2)*x^m/m)+x*O(x^n)),n)}

%o for(n=0,70,print1(a(n),", "))

%K sign

%O 0,9

%A _Paul D. Hanna_, Sep 30 2012