login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217333
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-x)^k ).
2
1, 1, 2, 5, 12, 29, 72, 182, 466, 1207, 3158, 8334, 22158, 59299, 159614, 431838, 1173710, 3203244, 8774780, 24118522, 66497316, 183858411, 509670494, 1416231616, 3944027402, 11006186760, 30772507128, 86191006746, 241815195292, 679488418879, 1912123070998
OFFSET
0,3
COMMENTS
The radius of convergence of g.f. A(x) is r = 0.339332122592393190... where 1-4*r+4*r^2-4*r^3+4*r^4 = 0, with A(r) = (1-2*r)/(2*r^3) = 4.112009743749...
FORMULA
G.f.: (1-2*x - sqrt(1-4*x+4*x^2-4*x^3+4*x^4))/(2*x^3).
Conjecture: (n+3)*a(n) +2*(-2*n-3)*a(n-1) +4*n*a(n-2) +2*(-2*n+3)*a(n-3) +4*(n-3)*a(n-4)=0. - R. J. Mathar, May 17 2019
G.f. A(x) satisfies: A(x) = 1 + x * (1 + x^2*A(x)^2) / (1 - 2*x). - Ilya Gutkovskiy, Jun 30 2020
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 29*x^5 + 72*x^6 + 182*x^7 +...
MATHEMATICA
(1 - 2x - Sqrt[1 - 4x + 4x^2 - 4x^3 + 4x^4])/(2x^3) + O[x]^31 // CoefficientList[#, x]& (* Jean-François Alcover, Oct 27 2018 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*sum(k=0, m, binomial(m, k)^2*x^k/(1-x+x*O(x^n))^k))), n)}
(PARI) {a(n)=polcoeff((1-2*x - sqrt(1-4*x+4*x^2-4*x^3+4*x^4 +x^4*O(x^n)))/(2*x^3), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A010374 A307788 A025273 * A089372 A036671 A152171
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 30 2012
STATUS
approved