login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-x)^k ).
2

%I #22 Jun 30 2020 18:50:54

%S 1,1,2,5,12,29,72,182,466,1207,3158,8334,22158,59299,159614,431838,

%T 1173710,3203244,8774780,24118522,66497316,183858411,509670494,

%U 1416231616,3944027402,11006186760,30772507128,86191006746,241815195292,679488418879,1912123070998

%N G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-x)^k ).

%C The radius of convergence of g.f. A(x) is r = 0.339332122592393190... where 1-4*r+4*r^2-4*r^3+4*r^4 = 0, with A(r) = (1-2*r)/(2*r^3) = 4.112009743749...

%H Paul Barry, <a href="https://arxiv.org/abs/1807.05794">Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences</a>, arXiv:1807.05794 [math.CO], 2018.

%F G.f.: (1-2*x - sqrt(1-4*x+4*x^2-4*x^3+4*x^4))/(2*x^3).

%F Conjecture: (n+3)*a(n) +2*(-2*n-3)*a(n-1) +4*n*a(n-2) +2*(-2*n+3)*a(n-3) +4*(n-3)*a(n-4)=0. - _R. J. Mathar_, May 17 2019

%F G.f. A(x) satisfies: A(x) = 1 + x * (1 + x^2*A(x)^2) / (1 - 2*x). - _Ilya Gutkovskiy_, Jun 30 2020

%e G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 29*x^5 + 72*x^6 + 182*x^7 +...

%t (1 - 2x - Sqrt[1 - 4x + 4x^2 - 4x^3 + 4x^4])/(2x^3) + O[x]^31 // CoefficientList[#, x]& (* _Jean-François Alcover_, Oct 27 2018 *)

%o (PARI) {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*x^k/(1-x+x*O(x^n))^k))),n)}

%o (PARI) {a(n)=polcoeff((1-2*x - sqrt(1-4*x+4*x^2-4*x^3+4*x^4 +x^4*O(x^n)))/(2*x^3),n)}

%o for(n=0,40,print1(a(n),", "))

%Y Cf. A025273, A217282.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Sep 30 2012