The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217282 G.f.: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^k ). 4
 1, 1, 2, 3, 5, 9, 16, 30, 57, 110, 216, 428, 857, 1730, 3516, 7191, 14785, 30544, 63370, 131976, 275811, 578219, 1215680, 2562652, 5415163, 11468455, 24338744, 51752029, 110239033, 235218046, 502674172, 1075823427, 2305661425, 4947834665, 10630848122, 22867799427 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Radius of convergence of g.f. A(x) is r = 0.446171506758870... where 1-r-2*r^2-2*r^3+r^4-r^5 = 0, with A(r) = (1-r^2)/(2*r^3) = 4.5087858050... LINKS Andrei Asinowski, Cyril Banderier, Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019). FORMULA G.f.: (1-x^2 - sqrt( (1-x-2*x^2-2*x^3+x^4-x^5)/(1-x) ))/(2*x^3). EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 16*x^6 + 30*x^7 +... PROG (PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*sum(k=0, m, binomial(m, k)^2*x^k*(1-x)^k)+x*O(x^n))), n)} (PARI) {a(n)=polcoeff((1-x^2 - sqrt( (1-x-2*x^2-2*x^3+x^4-x^5)/(1-x +x^4*O(x^n)) ))/(2*x^3), n)} for(n=0, 40, print1(a(n), ", ")) CROSSREFS Sequence in context: A331966 A072176 A329700 * A047061 A136169 A047041 Adjacent sequences: A217279 A217280 A217281 * A217283 A217284 A217285 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 29 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 27 22:14 EDT 2023. Contains 361575 sequences. (Running on oeis4.)