login
A275065
Number of permutations p of [n] such that p(i)-i is a multiple of ten for all i in [n].
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 3072, 9216, 27648, 82944, 248832, 746496, 2239488, 6718464, 20155392, 60466176, 241864704, 967458816, 3869835264, 15479341056, 61917364224, 247669456896, 990677827584, 3962711310336
OFFSET
0,12
LINKS
FORMULA
a(n) = Product_{i=0..9} floor((n+i)/10)!.
a(n) = ((m+1)!)^10/(m+1)^(10-k) where m=floor(n/10)=A059995(n) and k=n mod 10 =A010879(n). - Robert Israel, Jul 26 2016
a(n) ~ (2*Pi*n)^(9/2) * n! / 10^(n + 5). - Vaclav Kotesovec, Oct 02 2018
MAPLE
f:= n -> mul(floor((n+i)/10)!, i=0..9):
map(f, [$0..30]); # Robert Israel, Jul 26 2016
MATHEMATICA
Table[Product[Floor[(n + i)/10]!, {i, 0, 9}], {n, 0, 40}] (* Vaclav Kotesovec, Oct 02 2018 *)
CROSSREFS
Column k=10 of A275062.
Sequence in context: A274863 A138815 A275077 * A367654 A180212 A274862
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 15 2016
STATUS
approved