login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319952
Let M = A022342(n) be the n-th number whose Zeckendorf representation is even; then a(n) = A129761(M).
1
1, 2, 3, 1, 6, 1, 2, 11, 1, 2, 3, 1, 22, 1, 2, 3, 1, 6, 1, 2, 43, 1, 2, 3, 1, 6, 1, 2, 11, 1, 2, 3, 1, 86, 1, 2, 3, 1, 6, 1, 2, 11, 1, 2, 3, 1, 22, 1, 2, 3, 1, 6, 1, 2, 171, 1, 2, 3, 1, 6, 1, 2, 11, 1, 2, 3, 1, 22, 1, 2, 3, 1, 6, 1
OFFSET
2,2
COMMENTS
The Zeckendorf representations of numbers are given in A014417. The even ones are specified by A022342.
The offset here is 2 (because A129761 should really have had offset 1 not 0).
FORMULA
If the Zeckendorf representation of M ends with exactly k zeros, ...10^k, then a(n) = ceiling(2^k/3).
MAPLE
with(combinat): F:=fibonacci:
A130234 := proc(n)
local i;
for i from 0 do
if F(i) >= n then
return i;
end if;
end do:
end proc:
A014417 := proc(n)
local nshi, Z, i ;
if n <= 1 then
return n;
end if;
nshi := n ;
Z := [] ;
for i from A130234(n) to 2 by -1 do
if nshi >= F(i) and nshi > 0 then
Z := [1, op(Z)] ;
nshi := nshi-F(i) ;
else
Z := [0, op(Z)] ;
end if;
end do:
add( op(i, Z)*10^(i-1), i=1..nops(Z)) ;
end proc:
A072649:= proc(n) local j; global F; for j from ilog[(1+sqrt(5))/2](n)
while F(j+1)<=n do od; (j-1); end proc:
A003714 := proc(n) global F; option remember; if(n < 3) then RETURN(n); else RETURN((2^(A072649(n)-1))+A003714(n-F(1+A072649(n)))); fi; end proc:
A129761 := n -> A003714(n+1)-A003714(n):
a:=[];
for n from 1 to 120 do
if (A014417(n) mod 2) = 0 then a:=[op(a), A129761(n-1)]; fi;
od;
a;
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved