login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let M = A022342(n) be the n-th number whose Zeckendorf representation is even; then a(n) = A129761(M).
1

%I #15 Oct 03 2018 15:27:34

%S 1,2,3,1,6,1,2,11,1,2,3,1,22,1,2,3,1,6,1,2,43,1,2,3,1,6,1,2,11,1,2,3,

%T 1,86,1,2,3,1,6,1,2,11,1,2,3,1,22,1,2,3,1,6,1,2,171,1,2,3,1,6,1,2,11,

%U 1,2,3,1,22,1,2,3,1,6,1

%N Let M = A022342(n) be the n-th number whose Zeckendorf representation is even; then a(n) = A129761(M).

%C The Zeckendorf representations of numbers are given in A014417. The even ones are specified by A022342.

%C The offset here is 2 (because A129761 should really have had offset 1 not 0).

%F If the Zeckendorf representation of M ends with exactly k zeros, ...10^k, then a(n) = ceiling(2^k/3).

%p with(combinat): F:=fibonacci:

%p A130234 := proc(n)

%p local i;

%p for i from 0 do

%p if F(i) >= n then

%p return i;

%p end if;

%p end do:

%p end proc:

%p A014417 := proc(n)

%p local nshi, Z, i ;

%p if n <= 1 then

%p return n;

%p end if;

%p nshi := n ;

%p Z := [] ;

%p for i from A130234(n) to 2 by -1 do

%p if nshi >= F(i) and nshi > 0 then

%p Z := [1, op(Z)] ;

%p nshi := nshi-F(i) ;

%p else

%p Z := [0, op(Z)] ;

%p end if;

%p end do:

%p add( op(i, Z)*10^(i-1), i=1..nops(Z)) ;

%p end proc:

%p A072649:= proc(n) local j; global F; for j from ilog[(1+sqrt(5))/2](n)

%p while F(j+1)<=n do od; (j-1); end proc:

%p A003714 := proc(n) global F; option remember; if(n < 3) then RETURN(n); else RETURN((2^(A072649(n)-1))+A003714(n-F(1+A072649(n)))); fi; end proc:

%p A129761 := n -> A003714(n+1)-A003714(n):

%p a:=[];

%p for n from 1 to 120 do

%p if (A014417(n) mod 2) = 0 then a:=[op(a), A129761(n-1)]; fi;

%p od;

%p a;

%Y Cf. A003714, A014417, A022342, A072649, A129761, A130234.

%K nonn

%O 2,2

%A _Jeffrey Shallit_ and _N. J. A. Sloane_, Oct 03 2018