login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036082
E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=12.
0
1, 2, 17, 231, 3724, 68819, 1464781, 35645040, 973624491, 29313919207, 960689482494, 33997330377817, 1291521482389621, 52395164853506674, 2259005857941805253, 103064324686839195035, 4957382457319437575820, 250592665906288206715951, 13275467282249493427541201
OFFSET
0,2
COMMENTS
In general, for p>=2, a(n) ~ c * (p*n/LambertW(p*n))^n * exp(n/LambertW(p*n) + (p*n/LambertW(p*n))^(1/p) - n - 1 - 1/p) / sqrt(1 + LambertW(p*n)), where c = 1 for p>=3 and c = exp(-1/4) for p=2. - Vaclav Kotesovec, Jul 10 2022
REFERENCES
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
FORMULA
a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=12. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (12*n/LambertW(12*n))^n * exp(n/LambertW(12*n) + (12*n/LambertW(12*n))^(1/12) - n - 13/12) / sqrt(1 + LambertW(12*n)). - Vaclav Kotesovec, Jul 10 2022
MATHEMATICA
mx = 16; p = 12; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
Table[Sum[Binomial[n, k] * 12^k * BellB[k, 1/12] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Franklin T. Adams-Watters.
STATUS
approved