login
A036080
E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=10.
0
1, 2, 15, 175, 2452, 39703, 741177, 15771270, 375485507, 9837064575, 280338965720, 8623355105347, 284589703065137, 10022926411599482, 374900187362983015, 14830483377507515247, 618219446355189917804, 27071966121397255354079, 1241912851303663452150377
OFFSET
0,2
REFERENCES
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
FORMULA
a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=10. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (10*n/LambertW(10*n))^n * exp(n/LambertW(10*n) + (10*n/LambertW(10*n))^(1/10) - n - 11/10) / sqrt(1 + LambertW(10*n)). - Vaclav Kotesovec, Jul 10 2022
MATHEMATICA
mx = 16; p = 10; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
Table[Sum[Binomial[n, k] * 10^k * BellB[k, 1/10] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Franklin T. Adams-Watters.
STATUS
approved