login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215368
E.g.f.: Series_Reversion( x*cos(x) - x*sin(x) ).
2
1, 2, 15, 176, 2905, 61536, 1592703, 48706048, 1718376561, 68702272000, 3069734553743, 151592011714560, 8198710703202825, 481965222651551744, 30598546651134134655, 2086474763912627879936, 152083996930329322871521, 11800530001358902191587328, 971113004536128839898536079
OFFSET
1,2
LINKS
FORMULA
E.g.f. satisfies: A(x) = x / (cos(A(x)) - sin(A(x))).
a(n) = [x^n/n!] 1/(cos(x)-sin(x))^n / n.
a(n) = n*A201923(n-1).
a(n) ~ sqrt(-1 + 4/(3 + sin(2*s))) * n^(n-1) / (r^n * exp(n)), where s = 0.4026281741881116098199325239112307245635064777960... is the root of the equation s*cos(2*s) + sin(2*s) = 1 and r = s*(cos(s) - sin(s)) = 0.21266685344074710045360679397024815598865409988038310855608986167... - Vaclav Kotesovec, Oct 04 2020
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 15*x^3/3! + 176*x^4/4! + 2905*x^5/5! +...
where A(x*cos(x) - x*sin(x)) = x and A(x) = x/(cos(A(x)) - sin(A(x))).
Related expansions:
cos(A(x)) = 1 - x^2/2! - 6*x^3/3! - 71*x^4/4! - 1160*x^5/5! - 24481*x^6/6! - 631904*x^7/7! - 19288079*x^8/8! -...
sin(A(x)) = x + 2*x^2/2! + 14*x^3/3! + 164*x^4/4! + 2696*x^5/5! + 57006*x^6/6! + 1473632*x^7/7! + 45026344*x^8/8! +...
PROG
(PARI) {a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff(serreverse(x*cos(X)-x*sin(X)), n)}
(PARI) {a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff(x/(cos(X)-sin(X))^n/n, n)}
for(n=1, 31, print1(a(n), ", "))
CROSSREFS
Sequence in context: A360483 A222920 A036080 * A200795 A121427 A364340
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 08 2012
STATUS
approved