login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326412
Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i >= j <= k or i <= j >= k.
2
1, 1, 2, 5, 17, 69, 330, 1797, 11028, 74932, 559351, 4540088, 39840318, 375421225, 3782383945, 40548234374, 460956742449, 5536790753853, 70077462043662, 931945968071778, 12993337101354500, 189485727877247991, 2884989393948284323, 45772604755492432599
OFFSET
0,3
LINKS
Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
FORMULA
a(n) ~ n! * c * 2^n * n^((Pi+1)/2) / Pi^n, where c = 0.0662002484840446134... - Vaclav Kotesovec, Oct 31 2019
EXAMPLE
a(4) = 17: 0000, 0001, 0002, 0003, 0010, 0011, 0020, 0021, 0022, 0100, 0101, 0102, 0103, 0110, 0111, 0112, 0113.
MAPLE
b:= proc(n, j, t, u, c) option remember; `if`(n=0, 1, add(
`if`(c>0 or i>=j and t or i<=j and u, b(n-1, i,
is(i<=j), is(i>=j), max(0, c-1)), 0), i=1..n))
end:
a:= n-> b(n, 0, true$2, 2):
seq(a(n), n=0..25);
MATHEMATICA
b[n_, j_, t_, u_, c_] := b[n, j, t, u, c] = If[n == 0, 1, Sum[If[c > 0 || i >= j && t || i <= j && u, b[n - 1, i, i <= j, i >= j , Max[0, c - 1]], 0], {i, 1, n}]];
a[n_] := b[n, 0, True, True, 2];
a /@ Range[0, 25] (* Jean-François Alcover, Mar 01 2020, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 17 2019
STATUS
approved