login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248811
Triangle read by rows: T(n,k) is the coefficient A_k in the transformation of 1 + x + x^2 + ... + x^n to the polynomial A_k*(x+3)^k for 0 <= k <= n.
3
1, -2, 1, 7, -5, 1, -20, 22, -8, 1, 61, -86, 46, -11, 1, -182, 319, -224, 79, -14, 1, 547, -1139, 991, -461, 121, -17, 1, -1640, 3964, -4112, 2374, -824, 172, -20, 1, 4921, -13532, 16300, -11234, 4846, -1340, 232, -23, 1, -14762, 45517, -62432, 50002, -25772, 8866, -2036, 301, -26, 1, 44287, -151313, 232813, -212438, 127318, -52370, 14974, -2939, 379, -29, 1
OFFSET
0,2
COMMENTS
Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x+3)^0 + A_1*(x+3)^1 + A_2*(x+3)^2 + ... + A_n*(x+3)^n. This sequence gives A_0, ..., A_n as the entries in the n-th row of this triangle, starting at n = 0.
FORMULA
T(n,n-1) = -3*n + 1 for n > 0.
T(n,0) = A014983(n+1).
T(n,1) = (-1)^(n+1)*A191008(n-1).
Row n sums to A077925(n).
EXAMPLE
1;
-2, 1;
7, -5, 1;
-20, 22, -8, 1;
61, -86, 46, -11, 1;
-182, 319, -224, 79, -14, 1;
547, -1139, 991, -461, 121, -17, 1;
-1640, 3964, -4112, 2374, -824, 172, -20, 1;
4921, -13532, 16300, -11234, 4846, -1340, 232, -23, 1;
-14762, 45517, -62432, 50002, -25772, 8866, -2036, 301, -26, 1;
44287, -151313, 232813, -212438, 127318, -52370, 14974, -2939, 379, -29, 1;
MATHEMATICA
T[n_, k_]:= Sum[(-3)^(j-k)*Binomial[j, k], {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 27 2018 *)
PROG
(PARI) for(n=0, 20, for(k=0, n, print1(sum(i=0, n, ((-3)^(i-k)* binomial(i, k)) ), ", ")))
(Magma) [[(&+[(-3)^(j-k)*Binomial(j, k): j in [0..n]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, May 27 2018
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Derek Orr, Oct 14 2014
STATUS
approved