login
A248812
Repeated terms of (2n)! (A010050).
1
1, 1, 2, 2, 24, 24, 720, 720, 40320, 40320, 3628800, 3628800, 479001600, 479001600, 87178291200, 87178291200, 20922789888000, 20922789888000, 6402373705728000, 6402373705728000, 2432902008176640000, 2432902008176640000, 1124000727777607680000
OFFSET
0,3
COMMENTS
For n>1, a(n) is the product of the smallest parts in the partitions of 4*floor(n/2) = A168273(n) into two parts.
FORMULA
a(n) = ( 2*floor(n/2) )! = A000142(A052928(n)).
a(2n) = a(2n+1) = A010050(n) = A211374(2n-1).
E.g.f.: log((1+x)/(1-x))/2+1/(1-x^2). - Robert Israel, Oct 19 2014
MAPLE
A248812:=n->(2*floor(n/2))!: seq(A248812(n), n=0..20);
MATHEMATICA
Table[(2*Floor[n/2])!, {n, 0, 20}]
PROG
(Magma) [Factorial(2*Floor(n/2)) : n in [0..20]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 16 2014
STATUS
approved