

A248814


a(n) = (6n)!/(6!^n).


7



1, 1, 924, 17153136, 2308743493056, 1370874167589326400, 2670177736637149247308800, 14007180988362844601443040716800, 171889289584866507880743491472699801600, 4439413043841128802009762476941510771390464000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Column 6 of A187783.
Number of permutations of a multiset that contains n different elements, each occurring 6 times.


LINKS

Table of n, a(n) for n = 0..54


FORMULA

a(n) = (6n)!/(6!^n).


EXAMPLE

a(3) = (6*3)!/(6!^3) = 17153136 is the number of permutations of a multiset that contains 3 different elements 6 times, e.g., {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}.


MAPLE

A248814:=n>(6*n)!/(720^n): seq(A248814(n), n=0..10); Wesley Ivan Hurt, Nov 01 2014


MATHEMATICA

Table[(6 n)!/(720^n), {n, 0, 10}] (* Wesley Ivan Hurt, Nov 01 2014 *)


PROG

(MAGMA) [Factorial(6*n)/(720^n) : n in [0..10]]; // # Wesley Ivan Hurt, Nov 01 2014


CROSSREFS

Cf. A187783.
Sequence in context: A179715 A177305 A177306 * A172558 A229778 A172657
Adjacent sequences: A248811 A248812 A248813 * A248815 A248816 A248817


KEYWORD

nonn,easy


AUTHOR

Tilman Piesk, Oct 29 2014


STATUS

approved



