OFFSET
0,3
COMMENTS
Column 6 of A187783.
Number of permutations of a multiset that contains n different elements, each occurring 6 times.
FORMULA
a(n) = (6n)!/(6!^n).
EXAMPLE
a(3) = (6*3)!/(6!^3) = 17153136 is the number of permutations of a multiset that contains 3 different elements 6 times, e.g., {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}.
MAPLE
MATHEMATICA
Table[(6 n)!/(720^n), {n, 0, 10}] (* Wesley Ivan Hurt, Nov 01 2014 *)
PROG
(Magma) [Factorial(6*n)/(720^n) : n in [0..10]]; // # Wesley Ivan Hurt, Nov 01 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tilman Piesk, Oct 29 2014
STATUS
approved