login
A248814
a(n) = (6n)!/(6!^n).
7
1, 1, 924, 17153136, 2308743493056, 1370874167589326400, 2670177736637149247308800, 14007180988362844601443040716800, 171889289584866507880743491472699801600, 4439413043841128802009762476941510771390464000
OFFSET
0,3
COMMENTS
Column 6 of A187783.
Number of permutations of a multiset that contains n different elements, each occurring 6 times.
FORMULA
a(n) = (6n)!/(6!^n).
EXAMPLE
a(3) = (6*3)!/(6!^3) = 17153136 is the number of permutations of a multiset that contains 3 different elements 6 times, e.g., {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3}.
MAPLE
A248814:=n->(6*n)!/(720^n): seq(A248814(n), n=0..10); Wesley Ivan Hurt, Nov 01 2014
MATHEMATICA
Table[(6 n)!/(720^n), {n, 0, 10}] (* Wesley Ivan Hurt, Nov 01 2014 *)
PROG
(Magma) [Factorial(6*n)/(720^n) : n in [0..10]]; // # Wesley Ivan Hurt, Nov 01 2014
CROSSREFS
Cf. A187783.
Sequence in context: A362171 A177305 A177306 * A172558 A229778 A172657
KEYWORD
nonn,easy
AUTHOR
Tilman Piesk, Oct 29 2014
STATUS
approved