login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248809
Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
1
1, 2, 1, 3, 2, 1, 8, 7, 2, 1, 15, 18, 12, 2, 1, 48, 57, 30, 18, 2, 1, 105, 174, 141, 44, 25, 2, 1, 384, 561, 414, 285, 60, 33, 2, 1, 945, 1950, 1830, 810, 510, 78, 42, 2, 1, 3840, 6555, 6090, 4680, 1410, 840, 98, 52, 2, 1, 10395, 25290, 26685, 15000, 10290
OFFSET
0,2
COMMENTS
The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + (n + 1)/f(n-1,x), where f(0,x) = 1.
(Sum of numbers in row n) = A000982(n+1) for n >= 0.
(Column 1) is essentially A006882 (double factorials).
LINKS
Clark Kimberling, Rows 0..100, flattened.
EXAMPLE
f(0,x) = 1/1, so that p(0,x) = 1.
f(1,x) = (2 + x)/1, so that p(1,x) = 2 + x.
f(2,x) = (3 + 2 x + x^2)/(2 + x), so that p(2,x) = 3 + 2 x + x^2.
First 6 rows of the triangle of coefficients:
1
2 1
3 2 1
8 7 2 1
15 18 12 2 1
48 57 30 18 2 1
MATHEMATICA
z = 15; f[x_, n_] := x + (n + 1)/f[x, n - 1]; f[x_, 0] = 1;
t = Table[Factor[f[x, n]], {n, 0, z}]
u = Numerator[t]
TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (*A248809 array*)
Flatten[CoefficientList[u, x]] (*A249809 sequence*)
PROG
(PARI) rown(n) = if (n==0, 1, x + (n+1)/rown(n-1));
tabl(nn) = for (n=0, nn, print(Vecrev(numerator(rown(n))))); \\ Michel Marcus, Oct 25 2014
CROSSREFS
Sequence in context: A107880 A102228 A141675 * A021473 A266756 A035181
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Oct 23 2014
STATUS
approved