login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141675
Triangle, T(n, k) = n*(n-k+1)/(k+1) if n mod k+1 = 0, otherwise T(n, k) = n-k+1, read by rows.
1
1, 2, 1, 3, 2, 1, 8, 3, 2, 1, 5, 4, 3, 2, 1, 18, 10, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 32, 7, 12, 5, 4, 3, 2, 1, 9, 24, 7, 6, 5, 4, 3, 2, 1, 50, 9, 8, 14, 6, 5, 4, 3, 2, 1
OFFSET
1,2
FORMULA
T(n, k) = n*(n-k+1)/(k+1) if n mod k+1 = 0, otherwise T(n, k) = n-k+1.
EXAMPLE
Triangle begins as:
1;
2, 1;
3, 2, 1;
8, 3, 2, 1;
5, 4, 3, 2, 1;
18, 10, 4, 3, 2, 1;
7, 6, 5, 4, 3, 2, 1;
32, 7, 12, 5, 4, 3, 2, 1;
9, 24, 7, 6, 5, 4, 3, 2, 1;
50, 9, 8, 14, 6, 5, 4, 3, 2, 1;
MATHEMATICA
T[n_, k_]:= (n-k+1)*If[Mod[n, k+1]==0, n/(k+1), 1];
Table[T[n, k], {n, 12}, {k, n}]//Flatten
PROG
(Magma)
A141675:= func< n, k | (n mod (k+1)) eq 0 select n*(n-k+1)/(k+1) else n-k+1 >;
[A141675(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 06 2024
(SageMath)
def A141675(n, k): return n*(n-k+1)/(k+1) if n%(k+1)==0 else n-k+1
flatten([[A141675(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Apr 06 2024
CROSSREFS
Cf. A126988.
Sequence in context: A162387 A107880 A102228 * A248809 A021473 A266756
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by G. C. Greubel, Apr 06 2024
STATUS
approved