login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141676
Numbers k such that (sigma_0(k) * PrimePi(k)) == 0 (mod 8).
1
1, 7, 8, 10, 14, 15, 19, 20, 21, 22, 24, 30, 37, 38, 39, 40, 42, 46, 53, 54, 55, 56, 57, 58, 62, 65, 66, 70, 71, 72, 78, 82, 88, 89, 90, 91, 92, 93, 94, 95, 96, 102, 104, 105, 107, 108, 110, 114, 115, 118, 119, 120, 122, 123, 125, 126, 128, 130, 131, 132, 133, 134, 135
OFFSET
1,2
LINKS
MATHEMATICA
Flatten[Table[If[Mod[DivisorSigma[0, n]*PrimePi[n], 8] == 0, n, {}], {n, 1, 200}]]
Select[Range[200], Divisible[DivisorSigma[0, #]PrimePi[#], 8]&] (* Harvey P. Dale, Apr 29 2022 *)
PROG
(PARI) for(n=1, 150, if(Mod(sigma(n, 0)*primepi(n), 8)==0, print1(n", "))) \\ G. C. Greubel, Apr 02 2019
(Magma) [n: n in [1..150] | NumberOfDivisors(n)*#PrimesUpTo(n) mod 8 eq 0 ]; // G. C. Greubel, Apr 02 2019
(Sage) [n for n in (1..150) if mod(sigma(n, 0)*prime_pi(n), 8)==0 ] # G. C. Greubel, Apr 02 2019
CROSSREFS
Cf. A000005 (sigma_0), A000720 (PrimePi).
Sequence in context: A080113 A243078 A048588 * A127164 A153972 A286420
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 07 2008
EXTENSIONS
Edited by G. C. Greubel, Apr 02 2019
STATUS
approved