login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048588
Pisot sequence L(7,8).
2
7, 8, 10, 13, 17, 23, 32, 45, 64, 92, 133, 193, 281, 410, 599, 876, 1282, 1877, 2749, 4027, 5900, 8645, 12668, 18564, 27205, 39869, 58429, 85630, 125495, 183920, 269546, 395037, 578953, 848495, 1243528, 1822477, 2670968, 3914492, 5736965, 8407929, 12322417
OFFSET
0,1
FORMULA
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (holds at least up to n = 72000 but is not known to hold in general).
MAPLE
L := proc(a0, a1, n)
option remember;
if n = 0 then
a0 ;
elif n = 1 then
a1;
else
ceil( procname(a0, a1, n-1)^2/procname(a0, a1, n-2)) ;
end if;
end proc:
A048588 := proc(n)
L(7, 8, n) ;
end proc: # R. J. Mathar, Feb 12 2016
MATHEMATICA
RecurrenceTable[{a[0] == 7, a[1] == 8, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 50}] (* Bruno Berselli, Feb 05 2016 *)
PROG
(Magma) Lxy:=[7, 8]; [n le 2 select Lxy[n] else Ceiling(Self(n-1)^2/Self(n-2)): n in [1..50]]; // Bruno Berselli, Feb 05 2016
(PARI) pisotL(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]));
a
}
pisotL(50, 7, 8) \\ Colin Barker, Aug 07 2016
CROSSREFS
See A008776 for definitions of Pisot sequences.
Sequence in context: A067529 A080113 A243078 * A141676 A127164 A153972
KEYWORD
nonn
STATUS
approved