login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048586
Pisot sequence L(6,8).
3
6, 8, 11, 16, 24, 36, 54, 81, 122, 184, 278, 421, 638, 967, 1466, 2223, 3371, 5112, 7753, 11759, 17835, 27051, 41030, 62233, 94394, 143176, 217169, 329402, 499638, 757853, 1149515, 1743590, 2644686, 4011473, 6084623, 9229188, 13998881, 21233577, 32207203
OFFSET
0,1
MAPLE
L := proc(a0, a1, n)
option remember;
if n = 0 then
a0 ;
elif n = 1 then
a1;
else
ceil( procname(a0, a1, n-1)^2/procname(a0, a1, n-2)) ;
end if;
end proc:
A048586 := proc(n)
L(6, 8, n) ;
end proc: # R. J. Mathar, Feb 12 2016
MATHEMATICA
L[a0_, a1_, n_] := L[a0, a1, n] = Switch[n, 0, a0, 1, a1, _, Ceiling[L[a0, a1, n-1]^2/L[a0, a1, n-2]]];
a[n_] := L[6, 8, n];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 25 2023, after R. J. Mathar *)
PROG
(PARI) pisotL(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]));
a
}
pisotL(50, 6, 8) \\ Colin Barker, Aug 07 2016
CROSSREFS
Subsequence of A048583. See A008776 for definitions of Pisot sequences.
Sequence in context: A020716 A020937 A183208 * A080824 A183979 A100602
KEYWORD
nonn
STATUS
approved