|
|
A183979
|
|
1/4 the number of (n+1) X 3 binary arrays with all 2 X 2 subblock sums the same.
|
|
1
|
|
|
6, 8, 11, 17, 27, 47, 83, 155, 291, 563, 1091, 2147, 4227, 8387, 16643, 33155, 66051, 131843, 263171, 525827, 1050627, 2100227, 4198403, 8394755, 16785411, 33566723, 67125251, 134242307, 268468227, 536920067, 1073807363, 2147581955, 4295098371
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
G.f.: x*(6 - 10*x - 13*x^2 + 20*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = (3*2^(n/2) + 2^n + 6) / 2 for n even.
a(n) = 2^(n-1) + 2^((n+1)/2) + 3 for n odd.
(End)
|
|
EXAMPLE
|
Some solutions for 5 X 3.
..1..0..1....1..0..1....1..0..1....1..0..1....0..1..0....1..0..1....1..0..1
..0..1..0....1..1..1....0..1..0....0..0..0....0..1..0....1..0..1....1..0..1
..0..1..0....0..1..0....0..1..0....1..0..1....1..0..1....0..1..0....0..1..0
..0..1..0....1..1..1....1..0..1....0..0..0....1..0..1....0..1..0....1..0..1
..0..1..0....0..1..0....0..1..0....1..0..1....1..0..1....0..1..0....0..1..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|