|
|
A183978
|
|
1/4 the number of (n+1) X 2 binary arrays with all 2 X 2 subblock sums the same.
|
|
4
|
|
|
4, 6, 9, 15, 25, 45, 81, 153, 289, 561, 1089, 2145, 4225, 8385, 16641, 33153, 66049, 131841, 263169, 525825, 1050625, 2100225, 4198401, 8394753, 16785409, 33566721, 67125249, 134242305, 268468225, 536920065, 1073807361, 2147581953, 4295098369
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Based on the conjectured recursion formula, it is also the number of notches in a sheet of paper when you fold it n times and cut off the four corners (see A274230). - Philippe Gibone, Jul 06 2016
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4)
Based on the conjectured recursion formula, we may prove (by a tedious induction) that a(n) = (2^ceiling(n/2) + 1) * (2^floor(n/2) + 1) = A051032(n) * A051032(n-1) for n >= 1. - Philippe Gibone, Jul 06 2016, corrected by Robert Israel, May 21 2019
Empirical: G.f.: -x*(4-6*x-9*x^2+12*x^3) / ( (x-1)*(2*x-1)*(2*x^2-1) ). - R. J. Mathar, Jul 15 2016
Empirical formulas verified (see link): Robert Israel, May 21 2019.
|
|
EXAMPLE
|
Some solutions for 5X2
..0..1....1..0....1..0....1..1....0..1....1..0....1..0....0..1....0..1....0..1
..0..0....1..0....1..0....1..0....1..0....1..0....1..0....0..1....1..0....0..1
..1..0....1..0....0..1....1..1....0..1....0..1....0..1....1..0....0..1....1..0
..0..0....1..0....1..0....0..1....1..0....1..0....0..1....1..0....0..1....0..1
..1..0....1..0....1..0....1..1....1..0....0..1....0..1....1..0....1..0....0..1
|
|
MAPLE
|
seq((1+2^floor((n-1)/2))*(1+2^ceil((n-1)/2)), n=1..20); # Robert Israel, May 21 2019
|
|
CROSSREFS
|
Conjectured to be the main diagonal of A274636.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|