login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pisot sequence L(6,8).
3

%I #13 Oct 25 2023 09:28:28

%S 6,8,11,16,24,36,54,81,122,184,278,421,638,967,1466,2223,3371,5112,

%T 7753,11759,17835,27051,41030,62233,94394,143176,217169,329402,499638,

%U 757853,1149515,1743590,2644686,4011473,6084623,9229188,13998881,21233577,32207203

%N Pisot sequence L(6,8).

%H Colin Barker, <a href="/A048586/b048586.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a>

%p L := proc(a0,a1,n)

%p option remember;

%p if n = 0 then

%p a0 ;

%p elif n = 1 then

%p a1;

%p else

%p ceil( procname(a0,a1,n-1)^2/procname(a0,a1,n-2)) ;

%p end if;

%p end proc:

%p A048586 := proc(n)

%p L(6,8,n) ;

%p end proc: # _R. J. Mathar_, Feb 12 2016

%t L[a0_, a1_, n_] := L[a0, a1, n] = Switch[n, 0, a0, 1, a1, _, Ceiling[L[a0, a1, n-1]^2/L[a0, a1, n-2]]];

%t a[n_] := L[6, 8, n];

%t Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Oct 25 2023, after _R. J. Mathar_ *)

%o (PARI) pisotL(nmax, a1, a2) = {

%o a=vector(nmax); a[1]=a1; a[2]=a2;

%o for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]));

%o a

%o }

%o pisotL(50, 6, 8) \\ _Colin Barker_, Aug 07 2016

%Y Subsequence of A048583. See A008776 for definitions of Pisot sequences.

%K nonn

%O 0,1

%A _David W. Wilson_