OFFSET
0,5
COMMENTS
The order of the primes in the prime factorization of a(n) is given by
ord_{p}(a(n)) = (1/2)*Sum_{i>=1} floor(n/p^i)*(floor(n/p^i)-1).
Product of all entries of lower-left (excluding main diagonal) triangular submatrix of GCDs. Also the product of all entries of upper-right (excluding main diagonal) triangular submatrix of GCDs, since the matrix is symmetric. - Daniel Forgues, Apr 14 2013
a(n)^2 * n! gives A092287(n), where n! is the product of the main diagonal entries of the matrix. - Daniel Forgues, Apr 14 2013
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..97
OEIS Wiki, Generalizations of the factorial
FORMULA
a(n) = Product_{k=1..n} Product_{d divides k, d < k} d^phi(k/d).
n! * a(n)^2 = A092287(n).
a(n)/a(n-1) = A051190(n) for n >= 1.
a(n) = sqrt(A092287(n) / n!). - Daniel Forgues, Apr 14 2013
MAPLE
MATHEMATICA
a[n_] := Product[ d^EulerPhi[k/d], {k, 1, n}, {d, Divisors[k] // Most}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 27 2013, after Maple *)
PROG
(Sage) def A224479(n):
R = 1;
for p in primes(n):
s = 0; r = n
while r > 0 :
r = r//p
s += r*(r-1)
R *= p^(s/2)
return R
[A224479(i) for i in (0..20)]
(PARI) a(n)=prod(k=1, n, my(s=1); fordiv(k, d, d<k && s*=d^eulerphi(k/d)); s) \\ Charles R Greathouse IV, Jun 27 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Apr 07 2013
STATUS
approved