OFFSET
1,1
COMMENTS
These are the numbers n = 2, 4, 6, 7, 14, and the powers of 3 (without 3^0=1).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..2100
B. Avila and Y. Chen, On moduli for which the Lucas numbers contain a complete residue system, Fibonacci Quarterly, 51 (2013), 151-152.
Cheng Lien Lang and Mong Lung Lang, Fibonacci system and residue completeness, arXiv:1304.2892 [math.NT], 2013.
Index entries for linear recurrences with constant coefficients, signature (3).
FORMULA
G.f.: x*(15*x^7+13*x^6+12*x^5+11*x^4+6*x^3+5*x^2+3*x-2) / (3*x-1). - Colin Barker, Apr 14 2013
MATHEMATICA
With[{nn = 27}, Union[TakeWhile[{2, 4, 6, 7, 14}, # <= 3^nn &], Array[3^# &, nn]]] (* Michael De Vlieger, Oct 06 2020 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Apr 10 2013
EXTENSIONS
Corrected (term 9 was 27), Joerg Arndt, Apr 14 2013
STATUS
approved