OFFSET
1,1
COMMENTS
If 12*h-27 is a square then some values of 3*h are in this sequence. It is easy to verify that h is of the form 3*m^2-3*m+3, and therefore 9*(m^2-m+1) = (2-m)^3+(m+1)^3.
All entries are multiples of 9. [Proof: the cubes mod 3 are A010872. So the two cubes are either of the form (3i)^3 and (3j)^3 or (3i+1)^3 and (3j+2)^3. The same 3-periodic pattern is seen in the cubes modulo 9, A167176.] - R. J. Mathar, Aug 24 2016
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
MATHEMATICA
upto[n_] := Block[{t}, Union@ Reap[ Do[If[Mod[t = x^3 + y^3, 3] == 0, Sow@ t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3)]}] ][[2, 1]]]; upto[5000] (* Giovanni Resta, Jun 12 2020 *)
Module[{nn=20}, Select[Union[Total/@Tuples[Range[nn]^3, 2]], Mod[#, 3]==0 && #<nn^3&]] (* Harvey P. Dale, Mar 06 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 10 2013
STATUS
approved