|
|
A224483
|
|
Numbers which are the sum of two positive cubes and divisible by 29.
|
|
6
|
|
|
6119, 6293, 6641, 7163, 7859, 8729, 9773, 10991, 12383, 13949, 15689, 17603, 19691, 21953, 48778, 48952, 49474, 50344, 51562, 53128, 55042, 57304, 59914, 62872, 66178, 69832, 73834, 78184, 82882, 87928, 93322, 99064, 105154
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If 12*h-2523 is a square then some values of 29*h are in this sequence.
It is easy to verify that h is of the form 3*m^2-9*m+217, and therefore 29*(3*m^2-9*m+217) = (16-m)^3+(m+13)^3. [Bruno Berselli, May 10 2013]
|
|
LINKS
|
|
|
MATHEMATICA
|
upto[n_] := Block[{t}, Union@Reap[ Do[If[Mod[t = x^3 + y^3, 29] == 0, Sow@t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3)]}]][[2, 1]]]; upto[106000] (* Giovanni Resta, Jun 12 2020 *)
|
|
PROG
|
(Magma) [n: n in [2..2*10^5] | exists{i: i in [1..Iroot(n-1, 3)] | IsPower(n-i^3, 3) and IsZero(n mod 29)}]; // Bruno Berselli, May 10 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|