|
|
A064414
|
|
Fix a > 0, b > 0, k > 0 and define G_1 = a, G_2 = b, G_k = G_(k-1) + G_(k-2); sequence gives numbers m such that there exists (a, b) where G_k is divisible by m.
|
|
7
|
|
|
1, 2, 3, 4, 6, 7, 9, 14, 23, 27, 43, 49, 67, 81, 83, 86, 98, 103, 127, 134, 163, 167, 206, 223, 227, 243, 254, 283, 326, 343, 367, 383, 443, 446, 463, 467, 487, 503, 523, 529, 547, 566, 587, 607, 643, 647, 683, 686, 727, 729, 734, 787, 823, 827, 863, 883, 887
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
From Logan J. Kleinwaks, Oct 29 2017: (Start)
The squares of this sequence are the squares in A232656.
Conjecture: these are the numbers j such that j^2 = Sum_{d|j} phi(d)*A001177(d), where phi = Euler's totient function (A000010). See A232656. (End)
|
|
REFERENCES
|
Teruo Nishiyama, Fibonacci numbers, Suuri-Kagaku, No. 285, March 1987, 67-69, (in Japanese).
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..360
Brandon Avila and Tanya Khovanova, Free Fibonacci Sequences, Journal of Integer Sequences, Vol. 17 (2014), Article 14.8.5; arXiv preprint, arXiv:1403.4614 [math.NT], 2014.
|
|
EXAMPLE
|
If a = 1, b = 4, then G_k is (1, 4, 5, 9, 14, 23, ...) and no G_k is a multiple of 11. Therefore 11 is not in the sequence.
|
|
MATHEMATICA
|
g[a_, b_, k_] := Fibonacci[k-2]*a + Fibonacci[k-1]*b; ok[n_] := Catch[ Do[ test = Catch[ Do[ If[ Divisible[g[a, b, k], n], Throw[True]], {k, 1, 2*n}]]; If[test == Null, Throw[False]], {a, 1, Floor[Sqrt[n]]}, {b, 1, Floor[Sqrt[n]]}]] ; Reap[ Do[ If[ok[n] == Null, Print[n]; Sow[n]], {n, 1, 1000}]][[2, 1]] (* Jean-François Alcover, Jul 19 2012 *)
|
|
CROSSREFS
|
Prime terms are in A000057.
Cf. A232357, A232656.
Sequence in context: A055494 A239115 A165773 * A224482 A002475 A208281
Adjacent sequences: A064411 A064412 A064413 * A064415 A064416 A064417
|
|
KEYWORD
|
easy,nonn,nice
|
|
AUTHOR
|
Naohiro Nomoto, Oct 15 2001
|
|
EXTENSIONS
|
More terms from David Wasserman, Jul 18 2002
Name edited by David A. Corneth, Oct 30 2017
|
|
STATUS
|
approved
|
|
|
|